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Abstract

We present a finite volume method for the solution of the two-dimensional elliptic equation $ Æ (b(x)$u(x)) = f(x) with
variable, discontinuous coefficients and solution discontinuities on irregular domains. The method uses bilinear ansatz
functions on Cartesian grids for the solution u(x) resulting in a compact nine-point stencil. The resulting linear problem
has been solved with a standard multigrid solver. Singularities associated with vanishing partial volumes of intersected grid
cells or the dual bilinear ansatz itself are removed by a two-step asymptotic approach. The method achieves second order
of accuracy in the L1 and L2 norm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We seek solutions of the two-dimensional variable coefficient elliptic equation
0021-9
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1 Pot
r � ðbðxÞruðxÞÞ ¼ f ðxÞ; x 2 X n C ð1Þ

defined in a domain X n C with an embedded interface C. For simplicity we assume X to be a simple rectangle.
The embedded interface C separates two disjoint sub-domains Xþ and X� with X ¼ ðXþ [ X�Þ n C, see Fig. 1
for an illustration. Along the interface we prescribe jump conditions for the solution
½u�C ¼ uþðxÞ � u�ðxÞ ¼ gðxCÞ ð2Þ
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Fig. 1. Domain X with sub-domains Xþ, X�, and embedded interface C.
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and for its gradient in the normal direction
½bun�C ¼ bþuþn � b�u�n ¼ hðxCÞ; ð3Þ

with the notation un = ($u Æ n). The unit normal vector n on C is defined to point from Xþ to X�.

Elliptic equations of type (1) with variable and discontinuous coefficients and solution discontinuities often
arise as a component in modelling physical problems with embedded boundaries. Examples include incom-
pressible two-phase flow with surface tension featuring jumps in pressure and pressure gradient across the
interface, projection methods for zero Mach-number premixed combustion with jumps in the dynamic pres-
sure and pressure gradient across the flame front, heat conduction between materials of different heat capacity
and conductivity and interface diffusion processes. In the literature one can find a number of different
approaches for the numerical solution of this type of problem. We limit our discussion here to methods on
fixed Cartesian grids.

In Peskin’s immersed boundary method [17], singular forces arising from discontinuous coefficients and
jump conditions are treated as delta functions. Using discretised discrete delta functions, the discontinuity
is spread over several grid cells making the method first-order accurate. The method has been used for many
problems in mathematical biology and fluid mechanics. Recent work by Tornberg and Engquist [19,20,2] gen-
eralizes this approach and allows for high order approximations with minimal distribution of discontinuities
or singular source terms over the computational grid.

Mayo [13,14] presented a second order accurate method for Poisson’s equation and the biharmonic equa-
tion on irregular domains using an integral equation formulation. The resulting Fredholm integral equations
of the second kind are solved with a fast Poisson solver on a rectangular region. Although the method captures
solution discontinuities at the embedded interface, continuous derivatives have been assumed to evaluate the
discrete Laplacian. The method can easily be extended to fourth order accuracy.

The immersed interface method [6–8] is a second order finite difference method on Cartesian grids for sec-
ond order elliptic and parabolic equations with variable coefficients. Discontinuities in the solution and the
normal gradient at the interface are explicitly incorporated into the finite difference stencil. Second order
has been achieved by including additional points near the interface into the standard 5-point stencil leading
to a non-standard six-point stencil in 2D. The resulting linear equation system is sparse but not symmetric
or positive definite. Based on the immersed interface method Li and Ito [9] present a second order finite dif-
ference method which satisfies the sign property on the matrix coefficients which guarantees the discrete max-
imum principle. The resulting linear system of equations is non-symmetric but diagonally dominant and its
symmetric part is negative definite.

A first order finite difference method on Cartesian grids was presented by Liu et al. [11]. Interface jump
conditions are explicitly incorporated into the finite difference stencil as in the immersed interface method.
Applying a one-dimensional approach in each spatial direction by implicitly smearing out the gradient jump
condition, standard stencils (5-point in 2D, 9-point in 3D) for the discrete Laplacian are achieved leading to a
symmetric positive definite matrix for the Poisson equation. The method shows first order accuracy for the
solution u in the L1-norm for constant coefficients b±. A convergence proof of the method has been provided
in [12] based on the weak formulation of the problem.
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A finite element method on triangular meshes for solving second order elliptic and parabolic equations for
interface problems with [u] = 0 and [bun] 6¼ 0 has been proposed by Chen and Zou [1]. In their method the
triangles are aligned with the interface. In the L2-norm nearly second order accuracy (h2j loghj) has been
proved. The resulting linear system of equations is symmetric and positive definite. Another finite element
method based on uniform triangulations of Cartesian grids was presented by Li et al. [10]. In contrast to
[1], the triangles need not to be aligned with the interface. Numerical results with non-conforming finite ele-
ments demonstrate slightly less than second order of accuracy in L1 and second order of accuracy with con-
forming finite elements for a problem with homogeneous jump conditions [u] = 0, [bun] = 0. The general case
with variable coefficients and non-homogeneous interface conditions [u] 6¼ 0, [bun] 6¼ 0 has been tackled
recently by Hou and Liu [4] with a finite element method. Similar to [10] they use uniform triangulations
of Cartesian grids. Their method is second order accurate in L1 if the solution u is C2 and the interface is
C2 or C1.

Johansen and Colella [5] developed a second-order finite volume method on Cartesian grids for the variable
coefficient Poisson equation on irregular domains with Dirichlet and Neumann boundary conditions and com-
bined the method with an adaptive mesh refinement. Using central differencing for the gradients, their method
reproduces the standard five-point stencil on regular cells. Using linear interpolation of gradients for internal
edges and quadratic polynomials in normal direction to the boundary for irregular cells leads to a non-stan-
dard stencil. The final linear system is non-symmetric. Although remotely related to our work in the sense of
using a finite volume method, the authors did not consider embedded boundaries with jump conditions of the
solution and the normal derivative.

In this paper we present a second order finite volume method on Cartesian grids for solving the var-
iable coefficient elliptic equation (1) with embedded interfaces and interface discontinuities. The motivation
for a finite volume approach steams from our interest in conservative finite volume projection methods for
Zero- and Low-Mach-number flow. The divergence constraint of the velocity field in a natural way leads
to an elliptic equation for the pressure in a finite volume form. The use of piecewise bilinear ansatz func-
tion for the solution u makes our method quite similar to finite element methods and allows us to con-
struct improved exact projection methods [21]. In two space dimensions the resulting system of linear
equations is assembled from compact 9-point stencils. Compared to the cited literature our method differs
in the following points: (i) we use a finite volume method instead of finite difference [6,11] or finite ele-
ments [4,10]; (ii) compared to the second order immersed interface method [6] we achieve always automat-
ically a compact 9-point stencil without explicit incorporation of additional points near the interface or
solution of an optimization problem as in [9]; (iii) instead of piecewise linear ansatz-functions on triangles
as in the cited finite element methods we use piecewise bilinear ansatz-functions on the Cartesian grid.
Compared to the finite element method presented in [4], we are able to construct a bilinear finite element
which does not develop singularities when the element degenerates, e.g. for vanishing partial volumes of
intersected cells. In contrast to the cited finite element methods our methods results in a non-symmetric
matrix. In case of constant and equal coefficients we have a symmetric an positive definite matrix. In addi-
tion to representing a novel finite volume scheme for an important class of elliptic problems with embed-
ded interfaces, our ideas and results may also be of value in the context of finite element methods on
quadrilateral grids.
2. Finite volume formulation

Integrating Eq. (1) over an arbitrary control volume X 2 X leads to
Z
X
r � ðbruÞdV ¼

Z
X

f dV :
For a control volume X = X+ [ X� intersected by the interface we obtain after applying the divergence
theorem
Z

oX
bru � n dS ¼

Z
X

f dV �
Z

CX

½bun�dS; ð4Þ
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where CX denotes the part of the embedded interface C lying inside X and oX = (oX+ [ oX�)nCX. For CX 6¼ 0
we have
Fig. 2.
III.
Z
X

f dV ¼
Z

Xþ
f þ dV þ

Z
X�

f � dV : ð5Þ
For a regular control volume without an embedded interface we have either X ¼ Xþ 2 Xþ ^ X� � 0 or
X ¼ X� 2 X� ^ Xþ � 0 and the last integral on the right side of (4) vanishes.

3. Numerical method

We discretise (4) on a uniform Cartesian grid in two-dimensional space. Let Dx, Dy be the grid spacing in x
and y-direction, see Fig. 2. The values ui,j of our discretised solution are located at the grid nodes with the
coordinates xi,j = x0 + iDy, yi,j = y0 + jDy. The control volumes Xi,j are centered around the corresponding
grid nodes i,j having edges of length Dx and Dy. Let Ni;j be the set of rectangles – called cells in this work
– adjacent to node i,j (I–IV in Fig. 2). The discrete form of (4) for the control volume Xi,j now reads as
X
N2Ni;j

X2

i¼1

Z
lN
i

bru � ndS ¼
Z

Xi;j

f dV �
Z

CXi;j

½bun�dS; ð6Þ
where lN
i ; i ¼ 1; 2 are the two boundary edges with normals n1 and n2 of oXi,j lying inside N.

To evaluate the left hand side of (6) we use a finite element approach with piecewise bilinear ansatz func-
tions for u on each rectangular cell N 2 Ni;j.

3.1. Bilinear finite elements for regular cells

For any regular cell N 2 Ni;j without embedded interface we apply a standard bilinear local ansatz
uðn; gÞ ¼ c0 þ c1nþ c2gþ c3ng; n ¼ x� xN
0

Dx
; g ¼ y � yN

0

Dy
;

with n,g 2 [0,1]. Here, ðxN
0 ; y

N
0 Þ denotes the origin of the local n,g-coordinate system in global (x,y)-space. The

four unknown coefficients are uniquely determined by the four corner values of u. Given the piecewise bilinear
distribution of u(n,g) we evaluate the boundary integrals on the left side of (6) analytically. As an example, we
have for upper integral of cell IV in Fig. 2
Control volume Xi,j. Discrete solution values are located at the grid nodes marked with circles. Regular cells II, IV, irregular cells I,



Fig. 3. Stencil weights of the discrete Laplacian for a regular cell with b = 1, Dx = Dy using piecewise bilinear ansatz functions.
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Z
lN
i

bru � ndS ¼
Z 1

0:5

b
ou
on

dg ¼ b
Dy
Dx

3

8
ðuiþ1;j � ui;jÞ þ

1

8
ðuiþ1;j�1 � ui;j�1Þ

� �
: ð7Þ
Integrating over the whole boundary of Xi,j we find in the special case b = 1, Dx = Dy the stencil elements for
the discrete Laplacian of a regular control volume as displayed in Fig. 3. This dicretization has been analyzed
by Süli [18], who proved stability and second order convergence of the scheme on grids with arbitrary aspect
ratio Dx/Dy.

3.2. Evaluation of source terms

For a second order approximation of (5) we use
Z
X

f dV ¼ jXþjf þðxþs Þ þ jX�jf �ðx�s Þ; ð8Þ
where x�s denotes the barycenter of X±.
To avoid additional computations of interface jump conditions, the boundary integral on the right hand

side of (6) is evaluated assuming linear distributions of the interface jump conditions within cells. For a second
order approximation we have
Z

CXi;j

½bun�dS ¼
X

N2Ni;j

½bun�lC
XN

i;j

; ð9Þ
where lC
XN

i;j

is the part of the interface CXi;j in cell N which belongs to the control volume Xi,j.

3.3. Evaluation of the discrete Laplacian on irregular control volumes

In two spatial dimensions on a Cartesian grid, irregular cells can always be mapped onto one of the two
unit-square cells shown in Figs. 4 and 6 . We call a cell with an interface cutting the two adjacent edges of
the upper right corner type I and type II otherwise. The position of the interface is assumed to be a piecewise
straight line within the cell and is given by the zero level set of a signed normal distance function /(x). On each
side of the interface we make a bilinear ansatz:
uðAÞðn; gÞ ¼ a0 þ a1nþ a2gþ a3ng; n; g 2 XA;

uðBÞð~n; ~gÞ ¼ b0 þ b1
~nþ b2~gþ b3

~n~g; ~n; ~g 2 XB:
ð10Þ
The gradients follow immediately
ouðAÞ

on
¼ a1 þ a3g;

ouðAÞ

og
¼ a2 þ a3n;

ouðBÞ

o~n
¼ b1 þ b3~g;

ouðBÞ

o~g
¼ b2 þ b3

~n:

ð11Þ
The procedure of obtaining the eight unknown coefficients
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x ¼ ½a0; a1; a2; a3; b0; b1; b2; b3�t ð12Þ

is given in detail below. However, we will always be able to write x as a linear combination of the four un-
known corner values ui, i = 1, . . ., 4 and four known jump conditions [u]A, [u]B, [bun]A, and [bun]B:
x ¼ A b; ð13Þ
with b = [ut, [Æ]t]t,u = [u1,u2,u3,u4]t, and [Æ]t = [[u]A, [u]b, [bun]A, [bun]B]t. Furthermore, using (11) we can evaluate
any integral on the left hand side of (6) analytically on each irregular (and regular) cell. With (13) we can fur-
ther express each of these integrals as a linear combination of the four unknown corner values and known
jump conditions of the irregular cell. As an example, we consider cell I of the control volume Xi, j in Fig. 2,
which is an irregular cell of type II, see Fig. 6. For boundary edge lI

1 with unit normal n = [nx,ny]t = [0, 1]t

we can write
Z
lI
1

b
ou
oy

dx ¼ Dx
Dy

Z nH

1=2

bA ouA

og
dnþ

Z 0

~nH

bB ouB

o~g
d~n

 !
¼ð11Þ bADx

Dy
a2 nH � 1

2

� �
þ a3

nH
2

2
� 1

8

 ! !

� bBDx
Dy

b2
~nH þ b3

~nH
2

2

 !

¼ D1uþ D2½��;
with u = [ui�1,j,ui,j,ui,j+1,ui�1,j+1]t. Going from the first to the second line we have introduced the gradients
given in Eq. (11) and evaluated the integrals analytically. The matrices D1 and D2 are analytically deduced
from A and nw and they contain only geometric information about the interface within the irregular cell I.
Now, D1 determines the stencil coefficients for the discrete Laplacian, whereas D2 [Æ] will modify the right hand
side of the discretised equation (6). Furthermore, as u only contains the four unknown solution values, we will
always obtain a compact nine-point stencil (except for corner or boundary points of X, where we have four or
six-point stencils, respectively) during the calculation of the complete boundary integral on the left hand side
of (6). We treat the coefficients bA and bB piecewise constant on each cell with values evaluated at the bary-
centers of the corresponding sub-areas. This procedure is in accordance with [4] and does not seem to effect the
second order of the method. However, it is also possible to evaluate the coefficients either in the midpoint of
each integral or to prescribe a distribution and doing the integration again analytically.

3.4. Piecewise bilinear finite elements for irregular cells

Using piecewise bilinear ansatz functions (10) on irregular cells, we remark two important properties to get
the eight unknown coefficients in x:

Remark 3.1. Along a line parallel to any of the two coordinate axis, i.e. n = const. or g = const., we have a
linear distribution of u. This allows us to prescribe at most two independent jumps in the solution across the
interface, e.g. [u]A, [u]B in Figs. 4 and 6. If the interface is not parallel to a coordinate axis we can and do
prescribe one additional jump [u]C, whereas otherwise we can and do prescribe two of these jumps.

Remark 3.2. Along a line with nn = ± ng (i.e. the interface cuts the cell in a ±45�-angle), the gradient of u in
normal direction un = a1nn + a2ng + a3(gnn + nng) is constant! In that case we can prescribe only one indepen-
dent jump in the normal derivative, e.g. [bun]C, Figs. 4 and 6.

A straightforward solution to determine the eight unknown coefficients would be to use the four corner val-
ues u = [u1,u2,u3,u4]t complemented with jump conditions [u]A, [u]B, [bun]A and [bun]B. However, it is obvious
from Remark 3.2 that the resulting set of eight linear equations for x has a singularity whenever a = b,
nn ¼ ng ¼ 1ffiffi

2
p for cell type I as [bun]A and [bun]B are having the same set of coefficients in x. The same singularity

arises for cell type II if the interface crosses the cell diagonally.
Instead of using two jump conditions in [bun], one could apply only one gradient jump condition with an

additional jump in u, e.g. [bun]C and [u]C, in the midpoint C of the interface, see Figs. 4 and 6. However, due to
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Remark 3.1, [u]C becomes a linear combination of [u]A and [u]B whenever a = b for type II and b = 1, 0 6 a < 1
or a = 1, 0 6 b < 1 for type I.

Another singularity arises for irregular cells of type I. For a = b = 1 the interface touches the cell through
the upper right point of the cell. In that case the interface points A, B, C merge into one single point leading to
identical equations in [u] and [bun].

The resulting set of linear equations for x is not only unsolvable in any of the singular cases but the system
becomes ill-conditioned in situations near the singularities. To remove all the discussed singularities, we pro-
pose a two-step asymptotic approach instead of trying to find the solution in a single step. Instead of (10) we
set
Fig. 4.
u2 = 2,
uðAÞðn; gÞ ¼ uðA;0Þðn; gÞ þ euðA;1Þðn; gÞ;
uðBÞð~n; ~gÞ ¼ uðB;0Þð~n; ~gÞ þ euðB;1Þð~n; ~gÞ;

ð14Þ
with a properly defined small parameter e. The functions uðA;0Þ, uðA;1Þ, uðB;0Þ, and uðB;1Þ will be constructed in
such a way that the resulting solution is identical to the single step solution (10) in all non-singular situations.
Our base solution will be a solution satisfying the interface conditions [u]A, [u]B, [u]C, and [bun]C.

3.4.1. A bilinear finite element for irregular cell type I
In order to avoid the singularity discussed in Remark 3.2 we introduce an additional point C in the middle

of the interface, see Fig. 4. We prescribe jump conditions [u]A, [u]B, [u]C = ([u]A + [u]B)/2, and [bun]C =
([bun]A + [bun]B)/2. The small parameter e in (14) is defined as
e ¼ minð~a; ~bÞ:

To capture all singular cases e = 0 with the same leading order solution we need to define
½u�A ¼ ½u�B; if e ¼ 0 and ~b ¼ 0;

½u�B ¼ ½u�A; if e ¼ 0 and ~a ¼ 0:
ð15Þ
With this definition, we achieve that uðA;0Þð1; 1Þ ¼ u3 � ½u�C for e = 0. We define the leading order solution to
be constant in region B and bilinear in A:
uðA;0Þðn; gÞ ¼ að0Þ0 þ að0Þ1 nþ að0Þ2 gþ að0Þ3 ng;

uðB;0Þð~n; ~gÞ ¼ bð0Þ0 :
ð16Þ
For the coefficients we get að0Þ0 ¼ u1, að0Þ1 ¼ u2 � u1, að0Þ2 ¼ u4 � u1, að0Þ3 ¼ u1 � u2 þ u3 � u4 þ ½u�C, and bð0Þ0 ¼ u3.
Including the zero valued coefficients on B we can write this as
Irregular cell type I in the local n � g system with n,g 2 [0,1] (left). Typical solution for a = 0.2, b = 0.4, bA ¼ 1, bB ¼ 1000, u1 = 0,
u3 = 10, u4 = 3, [u]A = � 2, [u]B = � 5, [bun]A = 10, [bun]B = 10 (right).



Fig. 5. Condition number of matrix A(1) in comparison with the resulting matrix from a one-step solution and a ratio bA=bB ¼ 1000.
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xð0Þ ¼ Að0Þ
� ��1

b ð17Þ
with
ð18Þ
Remark 3.3. Using (15), the leading order solution is the correct solution uA ¼ uðA;0Þ in the limit e = 0. We
note that the constant solution uðB;0Þ does not cover any gradient uðB;0Þ for e = 0, ã 6¼ 0 or e = 0, ~b 6¼ 0.
However, in those cases the interface is aligned with the boundary of the cell and the solution in region B does
not have any influence on the evaluation of (6).

With the leading order solutions uðA;0Þ and uðB;0Þ we proceed to the first correction which is in our linear
problem already the exact final solution. We make a full bilinear ansatz on both sides of the interface:
uðA;1Þðn; gÞ ¼ að1Þ0 þ að1Þ1 nþ að1Þ2 gþ að1Þ3 ng;

uðB;1Þð~n; ~gÞ ¼ bð1Þ0 þ bð1Þ1
~̂nþ bð1Þ2 ~̂gþ bð1Þ3

~̂n~̂g;
ð19Þ
where we have introduced a re-scaling
~̂n ¼
~n
~b
; ~̂g ¼ ~g

~b
:

in region B. As the leading order solution covers already the four corner values of u, we get immediately
að1Þ0 ¼ að1Þ1 ¼ að1Þ2 ¼ bð1Þ0 ¼ 0. The missing four conditions for the remaining unknowns are the four jump con-
ditions ½u�ð1ÞA , ½u�ð1ÞB , ½u�ð1ÞC , and ½bun�ð1ÞC at the interface, leading to the following set of equations:
xð1Þ ¼ Að1Þ
� ��1

bð1Þ; ð20Þ
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with
xð1Þ ¼ að1Þ0 ; að1Þ1 ; að1Þ2 ; að1Þ3 ; bð1Þ0 ; bð1Þ1 ; bð1Þ2 ; bð1Þ3

h it

;

bð1Þ ¼ 0; 0; 0; 0; ½u�ð1ÞA ; ½u�ð1ÞB ; ½u�ð1ÞC ; e½bun�ð1ÞC

h it

;

and
The last row of (20) – namely the jump condition ½bun�ð1ÞC – has been multiplied by e to keep A(1) non-singular in
the limit e! 0. The non-zero elements of b(1) are given by
½u�ð1ÞA ¼
½u�A � ½u�

ð0Þ
A

e
¼ 1

e
½u�A � að0Þ0 þ að0Þ1 þ að0Þ2 aþ að0Þ3 a� bð0Þ0

� �� �
;

½u�ð1ÞB ¼
½u�B � ½u�

ð0Þ
B

e
¼ 1

e
½u�B � að0Þ0 þ að0Þ1 bþ að0Þ2 þ að0Þ3 b� bð0Þ0

� �� �
;

½u�ð1ÞC ¼
½u�C � ½u�

ð0Þ
C

e
¼ 1

e
½u�C � ða

ð0Þ
0 þ að0Þ1

1þ b
2
þ að0Þ2

1þ a
2
þ að0Þ3

ð1þ aÞð1þ bÞ
4

� bð0Þ0 Þ
� �

;

e½bun�ð1ÞC ¼ ½bun�C � ½bun�ð0ÞC ¼ ½bun�C � bA að0Þ1

nn

Dx
þ að0Þ2

ng

Dy
þ að0Þ3

nnð1þ aÞ
2Dx

þ ngð1þ bÞ
2Dy

� �� �
:

ð21Þ
Using the leading order solution (17) we can write b(1) with (21) as
bð1Þ ¼ B1xð0Þ þ B2b ¼ B1 Að0Þ
� ��1

þ B2

� �
b;
and further
xð1Þ ¼ ðAð1ÞÞ�1bð1Þ ¼ ðAð1ÞÞ�1ðB1ðAð0ÞÞ�1 þ B2Þb: ð22Þ
The matrices B1 and B2 are introduced to write b(1) in terms of x(0) and b. They follow directly from (21) and
are listed in Appendix A.

The complete solution for an irregular cell type I can now be assembled using (14), (16), (17), (19) and (22):
x ¼ Ab ¼ ðAð0ÞÞ�1 þ eðAð1ÞÞ�1ðB1ðAð0ÞÞ�1 þ B2Þ
� �

b; ð23Þ
Eq. (23) requires to invert A(1). Instead of using a two-step asymptotic approach one could calculate x in a
single step. However, the system becomes singular as e! 0 due to the exposed reasons. Fig. 5 compares
the condition number of matrix A(1) from the asymptotic two-step scheme with the resulting matrix of a single
step as a function of the small parameter e and a ratio bA=bB ¼ 1000. The condition number of the single-step
solution quickly becomes extremely large. Our two-step asymptotic approach has an almost constant condi-
tion number for e! 0 and has a well defined solution for e = 0. The singularity is shifted from the set of linear
equations to the small parameter �. In the numerical implementation we need to evaluate the term 1/e, see (21).
We get clean solutions for e as small as rmin, where rmin is the smallest positive floating point number
(rmin = 2.2251 · 10�308 for double precision floating point arithmetic on our machine). However, if e < eps2,
where eps is the relative floating point accuracy, we set x = x(0) and b = b(0) and do not compute the next order
solution. The asymptotic two-step solution is identical to the single-step solution with the exception that the
asymptotic solution stays well behaved in the limit e! 0.
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3.4.2. A bilinear finite element for irregular cell type II

The construction of a non-singular bilinear finite element for an irregular cell of type II, Fig. 6, follows the
lines presented in the preceding section for type I. Again, our base solution will be constructed with three pre-
scribed solution jumps [u] and one gradient jump [bun] across the interface. This ensures identical solutions for
type I and type II cells under conditions a = 0, b 2 [0, 1] for type I and a = 1, b 2 [0, 1] for type II, respectively.
However, as pointed out in Remark 3.1, we cannot prescribe three independent jump conditions [u] if a = b,
i.e., the interface cuts the cell perpendicular to the n-axis. To resolve this singularity we apply the two-step
asymptotic approach (14) with the small parameter now defined as
Fig. 6.
u3 = 1
e ¼ ða� bÞ:

We use a bilinear ansatz function for the leading order solution on both sides of the interface
uðA;0Þðn; gÞ ¼ að0Þ0 þ að0Þ1 nþ að0Þ2 gþ að0Þ3 ng;

uðB;0Þð~n; ~gÞ ¼ bð0Þ0 þ bð0Þ1
~nþ bð0Þ2 ~gþ bð0Þ3

~n~g:
ð24Þ
The leading order solution is determined by the four corner values of u and the jump conditions ½u�A, ½u�B,
½bun�A, and ½bun�B. Points A and B are defined to have the same n-coordinate as point C, i.e.
nA ¼ nB ¼ nC ¼ ðaþ bÞ=2, so that A ¼ A and B ¼ B in the limit e = 0, see Fig. 6. Therefore, the imaginary lead-
ing order interface has a unit normal vector n(0) = [1,0]t. The coefficients að0Þ0 ¼ u1, að0Þ2 ¼ u4 � u1, bð0Þ0 ¼ u3, and
bð0Þ2 ¼ u2 � u3 are defined by the corner values. With a unit normal vector n(0) = [1,0]t for the leading order
solution we have quasi one-dimensional distributions of u along g = const. lines. The solution for the remain-
ing coefficients is (see also [11,16])
að0Þ1 ¼
bB

d
�u1 þ u2 þ ½u�A �

ð1� cÞDx

bB
½bun�A

� �
;

bð0Þ1 ¼
�bA

d
�u1 þ u2 þ ½u�A þ

cDx

bA
½bun�B

� �
;

að0Þ3 ¼
bB

d
u1 � u2 þ u3 � u4 � ½u�A þ ½u�B �

ð1� cÞDx

bB
ð½bun�A � ½bun�BÞ

� �
;

bð0Þ3 ¼
�bA

d
�u1 þ u2 � u3 þ u4 þ ½u�A � ½u�B þ

ð1� cÞDx

bA
ð½bun�A � ½bun�BÞ

� �
;

Irregular cell type II in the local n � g system with n,g 2 [0,1] (left). Solution for a = 0.6, b = 0.2, bA ¼ 100, bB ¼ 1, u1 = 0, u2 = 7,
0, u4 = 3, [u]A = � 1, [u]B = � 4, [bun]A = 1, [bun]B = 10 (right).
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with d ¼ bBðaþ bÞ=2þ bAðð1� aÞ þ ð1� bÞÞ=2. For later purposes, we write the leading order solution in
matrix form
xð0Þ ¼ Að0Þ
� ��1

b ð25Þ
with
xð0Þ ¼

að0Þ0

að0Þ1

að0Þ2

að0Þ3

bð0Þ0

bð0Þ1

bð0Þ2

bð0Þ3

2
66666666666666664

3
77777777777777775

; Að0Þ
� ��1

¼

1 0 0 0 0 0 0 0

�dA dA 0 0 dA 0 dAcA 0

�1 0 0 1 0 0 0 0

dA �dA dA �dA �dA dA �dAcA dAcA

0 0 1 0 0 0 0 0

0 0 dB �dB 0 dB 0 �dBcB

0 1 �1 0 0 0 0 0

�dB dB �dB dB dB �dB �dBcB dBcB

2
66666666666664

3
77777777777775
;

b ¼ ½u1; u2; u3; u4; ½u�A; ½u�B; ½bun�A; ½bun�B�
t
;

ð26Þ
and dA ¼ bB=d, dB ¼ �bA=d, d ¼ ðnCbB þ ~nCbAÞ, cA ¼ ~nCDx
bB , cB ¼ nCDx

bA . Furthermore, we define
[u]C = ([u]A + [u]B)/2.

We use a similar bilinear ansatz for the correction as in (19):
uðA;1Þðn; gÞ ¼ að1Þ0 þ að1Þ1 nþ að1Þ2 gþ að1Þ3 ng;

uðB;1Þð~n; ~gÞ ¼ bð1Þ0 þ bð1Þ1
~nþ bð1Þ2 ~gþ bð1Þ3

~n~g;
ð27Þ
where the leading order solution with (14) immediately yields að1Þ0 ¼ að1Þ2 ¼ bð1Þ0 ¼ bð1Þ2 ¼ 0. The remaining coef-
ficients are calculated using the four jump conditions at the interface, with the first three of them
½u�ð1ÞA ¼
½u�A � ½u�

ð0Þ
A

e
¼ 1

e
½u�A � að0Þ0 þ að0Þ1 a� bð0Þ0 � bð0Þ1 ~a� bð0Þ2 � bð0Þ3 ~a

� �� �
;

½u�ð1ÞB ¼
½u�B � ½u�

ð0Þ
B

e
¼ 1

e
ð½u�B � ða

ð0Þ
0 þ að0Þ1 bþ að0Þ2 þ að0Þ3 b� bð0Þ0 � bð0Þ1

~bÞÞ;

½bun�ð1ÞC ¼
½bun�C � ½bun�ð0ÞC

e
¼ 1

e
½bun�C � bA að0Þ1

nn

Dx
þ að0Þ2

ng

Dy
þ að0Þ3

nn

2Dx
þ ngðaþ bÞ

2Dy

� �� ��

�bB bð0Þ1

nn

Dx
þ bð0Þ2

ng

Dy
þ bð0Þ3

nn

2Dx
þ ngð~aþ ~bÞ

2Dy

 ! !!
:

ð28Þ
We do not want to use jump condition [u]C directly as we have ½u�ð1ÞC ! ð½u�
ð1Þ
A þ ½u�

ð1Þ
B Þ=2 in the limit �! 0 mak-

ing the resulting equation a linear combination of the two other jump conditions. Instead, we use [u]C in the
following form
D½u� ¼ ½u�C �
1

2
ð½u�A þ ½u�BÞ ¼ �e

a3 � b3

4

� �
:

This leads us to the fourth condition for the unknown coefficients:
D½u�ð1Þ ¼ ½u�ð1ÞC �
1

2
½u�ð1ÞA þ ½u�

ð1Þ
B

� �
¼ D½u� � D½u�ð0Þ

e
¼ � að0Þ3 � bð0Þ3

e
: ð29Þ
Taking into account the known zero values of some of the coefficients, the complete set of linear equations can
now be written as
xð1Þ ¼ Að1Þ
� ��1

bð1Þ
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with
Fig. 7
and
bð1Þ ¼ 0; 0; 0; 0; ½u�ð1ÞA ; ½u�ð1ÞB ;D½u�ð1Þ; ½bun�ð1ÞC

h it

:

The non-zero elements of b(1) are given by the right hand sides of (28) and (29). Instead of solving for x(1) we
solve directly for e x(1). Doing so, factors of 1/e in (28) and (29) cancel and we do not need to divide by e at any
point for this type of element. With the leading order solution x(1) and the correction ex(1) we assemble the
complete solution following the lines presented in Section 3.4.1 and end with
x ¼ A b ¼ ðAð0ÞÞ�1 þ ðAð1ÞÞ�1ðB1ðAð0ÞÞ�1 þ B2Þ
� �

b: ð30Þ
The matrices B1 and B2 are again introduced to write the correction solution b(1) in terms of x(0) and b and are
provided in Appendix B.

Fig. 7 shows the condition number for matrix A(1) as a function of the parameter e and compares it with the
condition number of the matrix resulting from a one-step solution. The condition number in the two-step
asymptotic scheme is almost independent of e, whereas the condition number for the one-step solution scales
inverse proportional to e. We note that with increasing condition number the difference between the two-step
asymptotic solution and the single-step increases making the one-step solution useless in the limit e! 0.

3.5. Numerical stability investigation

The matrix resulting from our discretisation scheme is non-symmetric in general and not diagonally dom-
inant. This is true as well for the original immersed interface method [6]. The development of a formal stability
. Condition number of matrix A(1) in comparison with the resulting matrix from a one-step solution and a ratio bA=bB ¼ 1000.



Fig. 8. Condition-number of the resulting matrix for different values of the coefficients b+ and b� as the interface moves over the grid with
16 · 16 nodes.
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proof is a formidable task that is beyond the scope of this paper. Instead, we provide some representative
numerical stability tests which indicate robustness of our discretisation.

A first stability test addresses the question of how the condition number of the resulting matrix is affected
by the position of the interface relative to the underlying grid. Fig. 8 shows values of the condition number for
different ratios of the coefficients b+/b� as we move a straight interface at different angles over one cell of the
grid (here: 16 · 16 grid points on a computational domain �1 6 x, y 6 1). The condition number has been
defined as the ratio of the largest to the smallest non-zero eigenvalue of the matrix and computed with the
Matlab. Since we do not include any boundary conditions for this test, the resulting matrix is singular. Note,
however, that the resulting matrix has always only a single zero eigenvalue associated with the undetermined
absolute mean value of the solution. A value of f = � 1 corresponds to the first hit of the interface with the
cell whereas at f = 1 the interface hits the upper right corner, cf. Fig. 8. The interval �1 6 f 6 1 has been
resolved by 200 steps, i.e. 200 different positions of the interface.

The tests have been set up to cover all possible singularities associated with our dual bilinear ansatz. An angle
h = 0� covers singularities pointed out in Remark 3.1, while h = 45� leads to the singularities of Remark 3.2. In
the case of constant and equal coefficients b+:b� = 1 we see a constant condition number independent of the posi-
tion of the interface. For this special – although non-trivial – case the stencil elements are identical to those in the
case without interface (see Fig. 3), and the resulting matrix is symmetric and diagonally dominant.

Increasing the ratio of the coefficients increases the condition number linearly with the the ratio b+:b�.
However, as seen in Fig. 8, the condition number changes very smoothly and weakly with the position of
the interface relative to the underlying grid, and it exhibits no deviation in any of the singular cases.

A distinct feature in the theory of second order elliptic equations is their maximum principle. For any
numerical method solving elliptic problems a discrete maximum principle is therefore a desirable feature
beyond a reasonable order of convergence. Furthermore, if a numerical discretisation preserves a discrete
maximum principle, it is relatively straightforward to rigorously prove stability and convergence [15].

For each discrete control volume Xi,j, our finite volume method (6) leads to a 9-points stencil for the
approximation of the discrete Laplacian:
X
N2Ni;j

X2

i¼1

Z
lN
i

bru � ndS � Lhui;j ¼
X8

k¼1

ckuk þ cCuC;
where C denotes the central stencil element and the sum over k is taken over all mesh points which are neigh-
bors of C. A sufficient condition for a numerical discretisation to satisfy a discrete maximum principle is that
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all stencil weights ck > 0, cC < 0, and
P8

k¼1ck 6 jcCj (for details and additional assumptions see e.g. [15]). The
stencil weights of our method in the case of a regular cell for constant coefficient b are given in Fig. 3. The
related scheme satisfies a discrete maximum principle and has been proven by Süli [18] to be stable and second
order accurate. In the case of constant and equal coefficients b+:b� = 1 our discretisation leads to the same
stencil even for irregular cells. However, in the general case with b+:b� 6¼ 1 this is not the case and one cannot
use standard arguments based on the stencil weights of single rows within the resulting matrix to argue for a
discrete maximum principle. Fig. 9 shows maximum and minimum values for the off-diagonal stencil weights
ck and the diagonal stencil weight cC for control volume Xi,j (Fig. 8) as we move the interface over a cell at two
different angles and a ratio b+:b� = 1:100. It is apparent that the condition ck > 0 is not satisfied in general
which is a potential sign of instability. There are at least the following two options to address this issue: (i)
At those grid points, we can change to a lower order scheme locally, such as harmonic averaging, without
affecting the global second order accuracy of the scheme. (ii) We are currently working on an extended scheme
that addresses the limit of large or vanishing b through an asymptotic decomposition of the problem.

Here we provide a numerical test indicating that our method likely satisfies a discrete maximum principle.
We consider a case with constant solution u+(x) = 0, x 2 X+ and u�(x) = f � f0 = xcos(h) + ysin(h) � f0,
x,y 2 X�. We use the exact solution to compute values for Dirichlet boundary conditions, the jump condition
[bun] and the right hand side (5). The solution satisfies the condition [u] ” 0. Fig. 10 shows on the left side the
numerical solution on a computational domain �1 6 x, y 6 1 with 16 · 16 grid points and a straight interface
at an angle of 10� and a ratio b+:b� = 1:1000. If our stencil were to violate the maximum principle for this case
we should observe values u+ > 0. On the right side of Fig. 8 we display the maximum values of u on the com-
putational domain as we move the front at different angles over one cell. The maximum value is always com-
parable the machine accuracy (more precisely, to the order of the convergence criteria of the linear equation
solver). We have repeated this test with different ratios b+:b� and in no case did we observe a violation of the
discrete maximum principle.

We remark that it is very difficult to investigate the discrete maximum principle numerically with non-linear
solutions u�. The linear solution u�(x) = f � f0 allows us to compute the interface source term (9) – and there-
fore the entire right hand side of the linear system of equations – exactly! If we cannot provide an exact right
hand side, a violation of the maximum principle could be induced by the discretisation error of the right hand
side terms. Additional numerical tests with more or less arbitrarily complex geometries and constant solutions
in X+ and X� satisfied in all cases the discrete maximum principle.

We conclude from these tests that our method is a promising candidate for rigorous stability analysis. We
defer such analysis, as well as a systematic asymptotic study for b+/b� !1, to subsequent publications.
Fig. 9. Stencil weights c of the discrete Laplacian for an irregular cell b+:b� = 1:100 as the interface moves over the cell (for definition of f
and h see Fig. 8).



Fig. 10. Solution for the discrete maximum principle investigation on a 16 · 16 grid and a ratio b+:b� = 1:1000 (left). Maximum values of
the solution u with variation of the position of the interface (right, for definition of f and h see Fig. 8).
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4. Numerical results

In following examples we compare numerical results with given analytic solutions u+(x) and u�(x) and cor-
responding coefficients b+(x) and b�(x). We use the analytic solution to provide the right hand side f(x) in (1)
and to prescribe jump conditions [u] and [bun] at positions where the interface C crosses grid lines. Further-
more, the analytic solution provides us with the proper Dirichlet boundary conditions. The interface is defined
by the zero level of the signed normal distance function /(x). We set X+ and X� to be the region with /(x) > 0
and /(x) < 0, respectively. The position of the interface has been evaluated assuming linear distributions of /
between grid points. The unit normal vector pointing from X+ to X� is given by n ¼ � r/

jr/j. The arising linear
systems of equations have been solved with the hypre library [3] using an algebraic multigrid solver (AMG)
or an AMG preconditioned BICGSTAB solver. In our examples we made the experience that the AMG solver
works very reliable and fast up to a ratio of the coefficients b+ and b� of 1/100 and 100/1. For ratios of the
coefficients of 1000 and above we where not able to get solutions with the AMG alone and used the AMG
preconditioned BICGSTAB algorithm (see also our remarks on large coefficient ratios in the conclusions, Sec-
tion 5).

4.1. Example 1

This example is taken from [4]. We solve (1) in the domain �1 6 x,y 6 1. The interface is a simple circle
with radius 0.5 and midpoint at (0,0). The analytic solutions u±, the coefficients b±, and the level set function
are given as follows:
uþ ¼ lnðx2 þ y2Þ; u� ¼ sinðxþ yÞ;
bþ ¼ sinðxþ yÞ þ 2; b� ¼ cosðxþ yÞ þ 2;

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
� 0:5:
The solution as well as the the normal derivative are discontinuous across the interface. This example is char-
acterized by a simple geometry of the interface and a small difference between the coefficients b+ and b�.
Fig. 11 shows the numerical solution of the method using 80 · 80 grid-points. A convergence study with
two different sets of grids – one with Dx/Dy = 1 and the other with Dx/Dy = 3 – is summarized in Table 1.
The method achieves second order of accuracy in the L2, and L1 norm on both sets of grids. Our results
are comparable to the ones presented in [4] with a smaller error constant reported in [4]. However, using tri-
angulated Cartesian grids in [4], the interface is resolved with almost twice as many points as in our method on
an identical underlying Cartesian grid. This example shows a smooth second order behavior for the error with



Fig. 11. Solution for example 1 with 80·80 grid-points (left). Convergence results for the solution u and the gradient j$uj in theL1L2-norm (right). Table 1Convergence results for the solutionu in theL2andL1-norm for example 1 on two diffe
Grid L2OrderL1Order

64·64 2.9251e�04 1.8234e�03128·128 6.9066e�05 2.08 4.3578e�04 2.06256·256 1.7387e�05 1.99 1.2602e�04 1.79512·512 4.3486e�06 2.00 3.1314e�05 2.011024·1024 1.0923e�06 1.99 8.4610e�06 1.8940·120 3.8655e�04 1.41177e�0380·240 9.5271e�05 2.02 3.52939e�04 2.00160·480 2.3659e�05 2.01 9.24177e�05 1.93320·960 5.9741e�06 1.99 2.47270e�05 1.90640·1920 1.5876e�06 1.91 6.81066e�06 1.86
Dx= Dyfirst set,Dx/Dy= 3 second set.
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decreasing grid spacing. However, it is known for interface problems that the error does not necessarily behave
monotonically under grid refinement. Therefore, the asymptotic convergence rate is usually defined as the
slope of the linear least square fit of the error over mesh size in a log-log diagram. Fig. 11 plots the maximum
error L1 as well as the error in the L2 norm over mesh size h = Dx = Dy for the solution u and the norm of the
gradient jruj. The results have been obtained on 30 different grids ranging from 80 · 80 to 1040 · 1040 grid
points. The slopes of the least square fit are s = 2.0 and s = 1.9 in the L2 and L1 norm for the solution values
u, respectively. As expected, with a value of 1.0 we lose one order of accuracy for the gradient in the L1 norm
whereas we see an order of accuracy of 1.5 in the L2 norm. The gradients have been evaluated in the midpoints
of our bilinear cells, i. e. n ¼ g ¼ ~n ¼ ~g ¼ 0:5.

4.2. Example 2

This case follows an example investigated by Li in [8]. The position of the interface is given in parametric
form
andrent sets of grids
X ðhÞ ¼ rðhÞ cosðhÞ þ x0;

Y ðhÞ ¼ rðhÞ sinðhÞ þ y0;
0 6 h 6 2p; ð31Þ
with
rðhÞ ¼ r0 þ r1 sinðxhÞ; 0 6 h 6 2p:
The parameters are set to r0 = 0.5, r1 = 0.2, x = 5, and x0 ¼ y0 ¼ 0:2=
ffiffiffiffiffi
20
p

.



x

The analytic solution on the computational domain �1 6 x, y 6 1 is given as
uþ ¼ r4 þ C0 logð2rÞ
bþ

; u� ¼ r2

b�
;

bþ ¼ const:; b� ¼ const:;
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2
q

and C0 = � 0.1. Fig. 12 shows solutions on grids with 100 · 100 points and
convergence results for three different sets of coefficients b+, b�. A characteristic feature of this example is that
the solution becomes constants in regions with large b values, which is clearly seen for the second and third
case in Fig. 12 with b+ = 1000, b� = 1 and b+ = 1, b� = 1000, respectively.

The convergence results in Fig. 12 have been obtained on 30 different meshes having 80 · 80 up to
1040 · 1040 grid points. In all three cases we see a sharp drop of the error on the coarsest grids indicating a
poorly resolved interface. We left those results out in the evaluation of the convergence rates. The observed con-
vergence rates – or rather the slopes s of the linear least square fit – vary between 2.0–2.2 in the L2 norm and 1.8–
1.9 in the L1 norm for the solution values u indicating locally second order of accuracy even for large ratios of
the coefficients b+ and b�. Furthermore, we observe a strongly non-monotonic behavior of the maximum error
l1 under grid refinement. This can be explained by the fact that the control points of the interface on a Carte-
sian grid using a level set approach – namely the points where the interface cuts grid lines – are non-uniformly
spaced and that the distribution of those control points might get locally more unequal under grid refinement.
Similar behavior has been observed in [8]. As in example 1 we have for the gradient of u an order of accuracy of
1 in the L1 norm. In this example we see with values between 1.6 and 1.8 almost second order convergence of
the gradient in the L2 norm. The qualitative similarity between the curves for u and j$uj is apparent.

We repeated the calculations with values of b+ = 1, b� = 10�3 and b+ = 10�3, b� = 1. Up to an exact scal-
ing factor of 1000 the results are identical to the investigated set of coefficients b+ = 1000, b� = 1 and b+ = 1,
b� = 1000, respectively.

4.3. Example 3

In the third example, the interface is again given by Eq. (31) with the following set of parameters: x0 = 0.1,
y0 = 1.2, r0 = 0.5, r1 = 0.15, and x = 4. The solution domain is a square defined by �1 6 x 6 1 and 0 6 y 6 2.
The exact solution is adapted from [8]:
uþ ¼ exðx2 sinðyÞ þ y2Þ;
u� ¼ �ðx2 þ y2Þ:
In contrast to [8] we have varying coefficients
bþ ¼ 1000 ðxy þ 5Þ;
b� ¼ 1þ x2 þ y2:
The maximum ratio b+/b� at the interface is about 3600 and the smallest about 1100. Compared to example 2
the solution is independent of the coefficient b. However, the magnitude of the jump [bun] increases with the
jump [b].

Fig. 13 shows the numerical solution on a 100 · 100 grid and convergence results in the L1 and L2 norm.
The asymptotic convergence rates for the solution values are 2.1 in the L2 norm and 1.8 in the L1 norm show-
ing again locally second order of accuracy of the method. As in the examples before, we see again an order of
accuracy of 1 for the gradient in the L1 norm and a slightly better value of 1.5 in the L2 norm.
4.4. Example 4

This example is taken from Hou and Liu [4]. The interface is a cardioid with a level set function given by
/ðx; yÞ ¼ 3ðx2 þ y2Þ � x
� �2 � x2 � y2:
The specific feature of this example is the singular point of the interface with a cusp point at x = y = 0, Fig. 14.
The analytic solutions u±, the coefficients b±, and the level set function are given as follows:
uþ ¼ 1� x2 � y2; u� ¼ x2 þ y2 þ 2;

bþ ¼ x2 � y2 þ 3; b� ¼ xy þ 3:
Fig. 14 shows the numerical solution on a grid with 100 · 100 grid points and results of a convergence study
on 35 grids ranging from 80 · 80 to 1040 · 1040 grid points. Since this is a non-smooth interface at the cusp



Fig. 13. Solution for example 3 on

1 and L2norm (right).
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Fig. 14. Solution for example 4 on a 100 · 100 grid (left) and convergence study for the error in the L1 and L2 norm (right).
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point, we cannot expect second order convergence in the L1 norm for the solution values of u. The conver-
gence results in Fig. 14 demonstrate second order convergence in the L1 norm on the coarser grids compa-
rable to those used by Hou and Liu [4], and first order on finer grids which resolve the cusp. We find second
order convergence on all grids in the L1 norm if we exclude the area around the cusp point. Corresponding to
the abrupt change in the convergence order for the solution u we see an interim increase of the error in the
gradient. The overall order of convergence for the gradient in the L1 has been evaluated to a value of 0.8
for this problem. The L2 norm indicates second order convergence on all grids for the solution u and a con-
vergence order of 1.6 for the gradient j$uj.

5. Conclusion

We have developed a second-order accurate method for the solution of elliptic equations with variable coef-
ficients and discontinuities across an embedded interface. The interface is represented by a level set approach.
In contrast to existing methods in the literature we use a finite volume approach on Cartesian grids using ideas
from finite element methods in reconstructing the solution within grid cells. We have presented a piecewise
bilinear finite element for irregular cut cells taking into account known jump conditions of the solution
and the normal gradient across the interface. We resolve singularities arising from the bilinear ansatz itself
and the position of the interface relative to the grid by a two-step asymptotic approach. Although the subjects=2.0

s=0.8
a 100 · 100 grid (left) and convergence results for the solutionu and its gradient j $u j in the L
–223u –7 –6 –5 –4 –3–14–12–10–8–6–4–2 =x – s=2.3

s=1.0

s=1.6
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of this work is the numerical solution of elliptic equations we note that our bilinear finite element might be
equally useful for the reconstruction of any other discontinuous function on Cartesian grids (e.g.: the velocity
field in premixed combustion). Our discretisation leads to a compact nine-point stencil for the discrete Lapla-
cian, with appropriately adjusted weights near the interface. The resulting set of linear equations is symmetric
and positive definite in case of constant and equal coefficients. to be slightly non-symmetric. We have used the
black box algebraic multigrid solver of the hypre package [3] as a direct solver or as a preconditioner for the
BICGSTAB method to solve the systems of linear equations. Problems of the type considered here become
notoriously difficult to solve numerically for limitingly large ratios of the coefficients, say b+/b� !1. We will
address this issue systematically, again using asymptotic methods, in a forthcoming publication. The method
in principle can be extended to three spatial dimensions where we have four different types of irregular cells
and work with piecewise trilinear ansatz functions.
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Appendix A

In Section 3.4.1, Eq. (22), we introduced the matrices B1 and B2 to write b(1) in terms of x(0) and b. The are
given in detail here:
and
Appendix B

In Section 3.4.2, Eq. (30), we introduced the matrices B1 and B2 to write b(1) in terms of x(0) and b. The are
given in detail here:
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